USN	NSD4	840		
	1	and the second		

Max. Marks:100

First Semester M.Tech. Degree Examination, Dec.08/Jan.09 Digital Image Processing and Computer Vision

Time: 3 hrs.

4

Note: Answer any FIVE full questions

- a. Explain in detail the basic components comprising a typical general purpose system used for digital image processing. (10 Marks)
 - b. Consider the two image subsets S1 and S2 shown in figure Q1 (b). For $V = \{1\}$, determine whether these two subsets are i) 4-adjacent, ii) 8-adjacent or iii) m-adjacent.

(05 Marks)

	S ₁				S ₂				
0	0	0	0	0 0 0 1	0	0	1	1	0
1	0	0	1	0	0	1	0	0	1
1	0	0	1	0	1	1	0	0	0
0	0	1	1	1	0	0	0	0	0
0	0	1	1	1	0	0	1	1	1
			Fi	g. (21 (b)			

c. Discuss the first order derivatives for the detection of edges in an image.

(05 Marks)

- 2 a. Explain in detail the processes of converting continuous sensed data into digital form to create an image. (10 Marks)
 - b. Discuss in brief on how to zoom and shrink a digital image.
 - c. Explain the use of two dimensional second order derivatives for image enhancement.

(05 Marks)

(05 Marks)

- 3 a. Discuss how arithmetic / logic operations involving images are performed on a pixel-by-pixel between two or more images. (10 Marks)
 - b. An image has gray level PDF $P_r(r)$ shown in the figure Q3 (b). It is desired to transform the gray levels of this image so that they will have the specified $P_z(z)$ shown. Assume continuous quantities and find the transformation in terms of r and z that will accomplish this. (05 Marks)

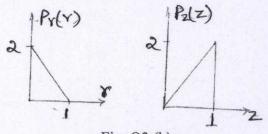


Fig. Q3 (b)

- Explain how noise reduction can be accomplished by blurring with linear and non linear filtering.
 (05 Marks)
- a. Using Illumination-Reflectance model, develop a frequency domain procedure for improving the appearance of an image by simultaneous gray level range compression and contrast enhancement. (10 Marks)
 - b. Explain in detail three types of Lowpass filters that cover the range from very sharp to very smooth filter functions. (10 Marks)

05SCS/SCE143

- Explain some important noise probability density functions found in image processing a. applications. (12 Marks)
 - b. Explain three principal ways to estimate the degradation function for use in image restoration. (08 Marks)
- Derive an expression to convert: a.
 - i) RGB to HSI

5

6

7

8

b.

- ii) HSI to RGB
- (10 Marks) Discuss in brief the processing techniques applicable to full color images that are handled for a variety of image processing tasks. (05 Marks)
- Show that scaling function, C.

 $1 \quad 0.25 \le x \le 0.75$ $\phi(\mathbf{x}) =$ elsewhere

does not satisfy the second requirement of multi resolution analysis.

- (05 Marks)
- Explain in brief three basic data redundancies which can be identified and exploited in a. digital image compression. (10 Marks)
 - Discuss in detail opening and closing which are important morphological operations. b.

(10 Marks)

- Write short notes on:
 - Edge linking and boundary detection. a.
 - b. Lossy compression.
 - The Haar transform. C.
 - d. Pattern and pattern classes.

(20 Marks)